Independent Race

Abstract

Mainstream theories of the Stroop effect sugdestfaster colour classification on
congruent trials (say, the word RED printed in cetbur) relative to incongruent trials (GREEN
in red) is due to channel interaction. Namely, infation from the irrelevant word channel
perturbs processing of the print colour, causingiin slower processing of incongruent displays.
In this note | advance a new model, in which colauad word are processed in parallel and
completely independent channels. The Stroop eifatien the outcome of signal redundancy in
congruent displays, where both colour and wordrimutie to the same response. Numerical
computations show that the model can produce tle®@effect (along with high accuracy rates)
for a subset of parameter values. Thus, it providesoof of existence for a separate-channel

theory, and a challenge to many existing theories.
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The Stroop effect (Stroop, 1935) is the prime eXampthe human failure to attend
selectively to an individual aspect of a stimulM#ien naming the colour in which colour words
are printed, people seem unable to ignore the mganiithe carrier word. They engage the
meaning of the word even when such processesraleviant to the task at hand and can hurt
performance. To gauge the influence of the irreiéveords, the Stroop effect is defined as the
difference in colour-naming performance betweergcoant (the word naming its colour) and
incongruent (word and colour conflict) stimuli. Fostance, when presented with the word
GREEN printed in red, observers are slower in redpw “red” then they are when presented
with the word RED printed in red.

Mainstream theories of the Stroop effect posit thatdetriment to performance on
incongruent trials and facilitation on congruerdlf is due to the automatic activation of word
meaning (e.g., Anderson, 1995, Ashcraft, 1994, raack recently Catena, Fuentes, & Tudela,
2002; but see Besner, Stoltz, & Boutilier, 1997%,dalifferent view). Consequently, channel
interaction is indispensable for the Stroop effeatnsue. The term “Stroop interference” (or
Stroop facilitation; cf. MacLeod, 1991) reflectsstdeep-seated notion.

The central role of word-colour cross-talk in exigttheories can be exemplified by
examining Cohen, Dunbar, and McClelland’s promiremtnectionist Stroop model (1990),
which allows “interactions between processes... whahways intersect.” (p.335). These
interactions can result in either interference, nvpatterns of activation are dissimilar, or
facilitation when “patterns of activation are vesiynilar.” Cohen et al. three-layer network
accrues evidence forward along word and colourvpays, and the total activation received by
the output units (e.g., “red”, “green”) determivelsich will cross its threshold first and

determine the response. Because activation frooucalnd word pathways is pooled together,
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decisions based on colour activation cannot happpendently from activation on the word
pathway, and vice versa.

In this note, | entertain a new, indeed revolutrgridea. | wish to show that a stochastic
model that does not entail a cross talk betweewhheanels for word and colour can nonetheless
produce the behavioral Stroop effect (i.e., fastdour performance on congruent than on
incongruent trials). In a nutshell, faster respsra® congruent trials as opposed to incongruent
trials may be a special case of the well knoedundant-target effect: responses to a congruent
Stroop stimulus (say, RED in red) are faster sing@gause it comprises a double- or redundant-
target display, whereas the incongruent stimulag, 6REEN in red) is a single-target display.
The critical point is that the redundant-targeeeffmay ensue in a strictly parallel and
independent system, where the different sourcagaimation (namely, word and colour) need
not interact. The proposed model is not that sifny#ethis gives the gist of the id&alotice that
a somewhat similar idea was considered by MacLeddWacDonald (1998), and supported
empirically by Eidels, Townsend, and Algom (2010¢ither, however, developed a complete
formal model. If successful, such a model inviteghalesale revision of existing theories of the

Stroop effect.

Stroop as a Redundant Targets Effect
How can the Stroop effect emerge under a strichaltel-independent regime? Consider

the congruent stimulus (say, RED printed in redjthBof its presented attributes lead to the same

! To be accurate, with the current realization afrfchannels, the incongruent stimulus GREEKethalso
possesses two sources of information for a cofredt response: the presented colour, and the mesemted word.
However, since the processing rate of non-preseattatutes is slower than that of presented atteib (see
Assumption 1), the non-presented word RED doesowtribute to the correct response as much asrésepted
RED would when a congruent combination, RED in iedlisplayed. Therefore, the example in the tertes as a
good approximation to illustrate the differencemcessing of congruent and incongruent stimuliij we provide a
full description of the model in the upcoming seuwtiOf course, the model itself makes use of alf fthannels, and
no approximations are made.
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response, “red”. Hence, this stimulus is also ebtestarget stimulus. Such a trial, is a race
between separate processes (each generating atetirision with respect to its individual
target) with the response determined by whichekianoel that finishes processing first. The
incongruent stimulus, in contrast, is a single¢aggimulus because the target is presented in one
channel (red) but a non-target is presented imther channel (GREEN). A race develops on this
trial, too, with the former channel generating tloerect response. Therefore, congruent and
incongruent stimuli differ in the number of preshtargets. A congruent Stroop stimulus is
practically a display containing two targets. Aoangruent Stroop stimulus, in contrast, is a

display containing a single target (along withregk distractor).

An immense literature on target search (e.g., Baud& Algom, 2009; Egeth &
Dagenbach, 1991; Grice, Canham, & Boroughs, 198#itiich & Cohen, 2002; Miller, 1982;
Mordkoff & Yantis, 1991; Townsend & Eidels, 2011owWnsend & Nozawa, 1995) shows that
performance is faster with displays containing rethnt targets than with displays containing a
single target. Notably, this redundant target effepresent even when processing is strictly
parallel as it is in the present model, by waytafistical facilitation (Raab, 1962). According to
this notion, responses on redundant target trmathjn the purview of a race model, are
especially fast because they are produced by #terfaf two stochastic processes. The generally
faster process determines the response on theitpabredundant target trials; the other process
does so on the remaining trials on which it is @mabteristically fast. Therefore, on average,

response time (RT) on redundant target trials lvalshorter than on single target trials.

We immediately see that the Stroop effect is edentao the redundant-target effect.
One can say that the Stroop effect is a special chthe redundant-target effect where the

pertinent displays are colour words printed in @asi colours. If so, the Stroop effect can derive
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without any form of interaction between colour amafd (e.g., automatic dominance of reading
over naming, semantic interference and facilitgtamresponse competition at the response
buffer). Word and colour do not communicate witle @mother nor share a decision mechanism.

The colour horse does not “know” the content, imdw® very existence of the word horse.

The Model

Consider the standard Stroop task of naming theucaf colour words in a simple 2
(word: RED, GREEN) x 2 (coloured, green) matrix. The word RED printed ired and the
word GREEN printed igreen both comprise congruent stimuli. REDgreen and GREEN in
red comprise incongruent stimuli. A Stroop effect ezssif, for example, participants are faster to
name the colour “red” when presented with the coegt stimulus RED ined than they are with
the incongruent stimulus GREEN ried.

The Stroop process is formalized as a counter m@daevnsend & Ashby, 1983), with
four parallel and independent counters. A protatgpbschemata for a four-channel parallel model
is shown in Figure 1All of the words and colours included in the stimulaseenble are activated
on each trial. Given the aforementioned 2 x 2 matficolour words and colours, the four
channels for RED, GREENed, andgreen are activated on each trial of the experiment
regardless of the single combination presentedi&w on any particular trial. In a different
situation, for example given a Stroop matrix ofofoars and 10 words, 16 channels are activated
on each and every trial. This is a stochastic modeahstantiation of a well-known result from
information theory. Perception depends not onlyhenstimulus presented for view but also on
its alternatives, those stimuli that could haverbeeesented although were not presented on that

particular trial (Garner, 1974; Melara & Algom, Z)0 [Figure 1 here]
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A. Congruent stimulus: RED in red
Presented word (RED) < }
Presented colour (red)

Non-presented word (GREEN)

N

Non-presented colour (green)

B. Incongruent stimulus: GREEN in red

Presented word (GREEN)

Presented colour (red) }
Non-presented word (RED)< —

Non-presented colour (green) |l

Figure 1. lllustration of activations in a separate channeiedel with four parallel and
independent channels. Each panel shows activatiofoar channels, for a particular Stroop
stimulus. Longer arrows represent higher processatgs for presented over non-presented
attributes. The circled channels contribute todbeect response. When presented with the word
RED written in the congruent colour red (Rr; pargl activation rates for the presented
attributes (word RED, colour red) are higher thha tespective rates for the non-presented
attributes (GREEN, green). Notably, these potertnokls contribute to the correct response
(“red”). When presented with the incongruent comation of the word GREEN written in red
(Gr; panel B), the presented colour red and thepresented word RED contribute to a correct
“red” response. The total “red” activation on a garent trial (from channels RED, red -- panel
A) is higher than the total “red” activation on iaongruent trial (channels GREEN, red -- panel
B).

With four processing channels, each working asumi@y that accumulates evidence
towards some criterion at a given rate, there grar8meters in the model. There are 4 rate

parameters, one for each of the channels (presemet] presented colour, non-presented word,
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non-presented colour), and there are 4 correspgruditerion values. By criterion, or threshold, |
refer to the critical amount of evidence that isessary in order for a particular channel to win
the race and initiate response. The rate of eaghre corresponds to the speed by which it
accumulates evidence. Thus, a high rate in a péatichannel, say, the presented coladl
implies that in a fixed unit of time this channettigers a lot of evidence in favor of responding
“red”. Concomitantly, a high rate implies that atmaular channel needs little time to collect
enough evidence to exceed its criterion. Channglshigh rates and/or low criterion values are
more likely to win the race and consequently deteenthe response.

| present the model by first introducing the naatfor rates and criteria. LetaYVs, Vc,
and \p be the processing rates for the channels of tegepted word, presented colour, non-
presented word, and non-presented colour, resgégctivet ky, ks, ke, and k be the
corresponding criterion values for each of the cleds For processing rates, it is sensible to
assume that the rates for presented featuressies fhan the rates for non-presented features,
MIN(V a, VB) > MAX(V ¢, Vp). For example, when stimulus GREENr&dl is presented, the
GREEN anded counters will accumulate evidence at a fastertrate will the RED andreen
counters. Perceived stimuli (i.e., the attributesspnted for view on a particular trial) are
processed more efficiently than those merely renggatbfrom previous trials, although, again,
all channels are activated on each and every Tiias assumption is captured by the length of the
arrows in the visual illustration of the model, geated in Figure 1. Note though that when fitting
the model to data | relaxed this assumption anth&etates vary freely. To foreshadow the
outcome, it was reassuring to find out that thissarder assumption was maintained in the
fitting results.

Next, | derive theonditional processing-time density functions for congruertt an

incongruent trials (i.e., completion time condigahon correct responding). With these
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expressions at hand | can fit the new model to sogbiStroop data (from Eidels, Townsend, and
Algom, 2010; Experiment 4), or simulate it for age of parameter values (see Appendix).

Let f(t) = P(T=t) be the probability density function of processiimge, T, that represents
the likelihood of a process to finish at timd.et F¢)=P(T<t) be the cumulative distribution
function of processing time, that tells the proligbof a process to finish at or before time
Finally, let us define the survivor functiont5€ P(RT>) = 1-F{), as the probability that the
process is finished later than timéNow, assume that there are two parallel and iexeépnt
processing channels, A and B, that race againkt@aer to determine the response, and that the
overall processing in the system terminates as aedhe faster of the two channels finishes
(minimum-time stopping rule). Townsend & Ashby (B)8howed that for a two-channels
independent parallel model with a minimum-time giag rule the survivor function for the
faster of the two channels (i.e., the winner ofrémee) is the product of the survivor functions of

each channel alone, such that

SMIN(A,B) (t) = Sa(t) [55(1) 1)

Observe that neither A nor B alone always win. Beegprocessing is stochastic, then on
some cases A wins, and on others B wins. The dya@tessing of the system only lasts as long
as both processes are unfinished. Once the wienairtates then processing in the system
ceases, and a response is initiated. If we takdeheative (d/dt) from both sides of Equation (1)
we obtain the (unconditional) probability distrilmrt for the winner of the race, which, by

product rule, turns to be
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fumncag) (1) = T4 () By (1) + Sa (1) T (1) ()

It is termedunconditional density since it gives the probability of the &stf the two
channels (A, B) to finish at tinteregardless of whether the response was correxitoin other
words, this is the probability distribution of thnner of the race that is not conditioned on the
response being correct. For example, considetex ieentification experiment where either A or
B can be presented as stimuli, and “A” or “B” ane torresponding responses. Suppose that the
letter A is presented on the screen. Then, if perémce is better than chance, on most trials
channel A wins and determines the response. On saads however, channel B wins and leads
to an incorrect response, “B”. The unconditionalgity gives the response times distribution of
the winner of the race, regardless of whether & war B, and thus it includes responses from
both correct and incorrect trials. Similarly, wfthur channels rather than two, the survivor

function and the (unconditional) probability dibtstion of the winner are, respectively:

Suinas.c.p) (1) = Sa (1) BBy (1) BB (1) (5 (1) 3)

fainasco) (1) = FA(0) [Sg(0) [S: (1) 1S, (1) + Su (1) [ (1) 1S (1) 1S, (1)
+ S (1) B85 (1) L (1) BBy (1) + S, (1) D5 (1) B (1) L (1)

4)

Now we are ready to move on from the general calere A, B, C, and D can be any
four channels, to our Stroop situation where caand colour words are the subject of
processing. Let A be the processing channel opthsented word (with rates\and criterion

ka). Similarly, let B, C, and D be the processingruies of the presented colour, non-presented
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word, and non-presented colour, with rates V¢, and \ (and criteria k, ke, and lg),
respectively. Consider first the congruent conditisay, the word RED printed red (Rr). A
correct response (“red”) ensues if and only ifwleed RED (with rate ¥) or the coloured
(with rate &) wins the race. To obtain the conditional prokbgbdensity function for either
RED orred winning (‘conditional’ since it is conditioned dhe response being correct), we take
only the first two terms from Equation 4, where tingt term correspond to the probability that
channel A (processing the word RED) satisfies tlesqribed criterion but channels B, C, & D do
not, and, similarly, the second term correspond3 (colourred), but not A, C, & D reaching
criterion. We then divide by the over all probalyilbf a correct response, i.e., the probabilityt tha
either RED orred wins, which is given by integrating the numerdtom zero to infinity.

The probability density function (pdf) of a correesponse “red” on a congruent trial Rr

in which either RED ored wins the race is thus given by

LOSOISOS0+ LOSOSOS0 g

fA_or _B_win|COR (t) = o o

[ £a(0) B85 (1) (B (1) 0B, (1)t + [ F5(t) 0B, (t) (5 (1) (5, (t)ct

=0

In a similar fashion we can obtain the probabiignsity function of a correct response on an
incongruent trial, Gr. For Gr, the presented atitiels are the word GREEN and the colicadk:
Because the task remains that of colour namingzah®ct response is still “red.” As in the
congruent case, a correct response (“red”) en$aeslionly if the word RED or the colour red
(with rate \g) win the race. Unlike the congruent case, howawerword RED is not presented

for view, hence it is processed at a slower rate, ¥ obtain the conditional density for either

10
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RED orred winning, we now take the second and the third sefin@mm Equation 4, and divide by
their integrals from zero to infinity.
The probability density function for a correct respe “red” on an incongruent trial Gr in

which either RED (with rate &) or red (with rate \) wins the race is

oo o wpon() = OSOSOSO* LOSOSOSO
J. fo (1) LB, (1) 0B (1) (5, (t)at + J. . (t) 0B, (t) 5. (t) 05, (t)dlt

Using the probability density functions for the goament and incongruent RTs in
Equations 5 and 6, respectively, one can simultegertodel or fit it to data, as | report next.
Before moving on to the results the reader may Imatieed at this point two interesting
properties of the model: first, it explains Stragfect as the difference between RTs for
incongruent versus congruent displays. Thus, itftaseparate mechanism for ‘interference’
(slowdown on incongruent trials compared with naluials) and ‘facilitation’ (faster responses
on congruent trials compared with neutral tridishall address this point in the final section the
paper. Second, the model is ‘error-driven’, mearivag it requires errors in order to manifest a
Stroop effect. Namely, for a Stroop effect to ensue current regime, the (irrelevant)
presented-word channel has to occasionally winc@mruent trials this will lead to faster
responses via the redundant target effect, buh@mngruent trials, such as GREEN in red, if the
GREEN channel wins then the outcome is an errongpasn” response. Thus, an important
prediction of the model is that human performamcthe Stroop task is imperfect. A related
prediction then follows: the presented-word chanviahing results in incorrect responses on

incongruent trials, but correct responses on caergrtrials. Therefore, the model predicts a

11
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higher error rate on incongruent compared with coeigt trials. Finally, the most important
prediction of the model was iterated before, he@gkia many other papers: response times on
congruent trials are predicted to be faster thaongruent trials (the Stroop effect).

In the next section | test the above predictiongXxgmining the Stroop data collected by
Eidels, Townsend, and Algom (2010). | consider REFsyr rates, and their relationships. | then

report results of fitting these data to the genfenim of the new model (Equations 5 and 6).

Results
Eidels, Townsend, and Algom (2010; Experimentréspnted 22 participants with a
standard Stroop task, where they had to class&ythnt colour of the colour-words RED and
GREEN by pressing one key if the colour was redamather key if the colour was green.
Conveniently, this stimulus ensemble perfectly meascthe 2 colours x 2 words stimulus set-up
presented earlier in the Model section (and in Fdl), making these data readily available for
fitting.

Response-Time Stroop Effect

One participant (#18) had an error rate of 31%\waas excluded from analysis. Table 1
presents individual data for each of the remai@hgarticipants as well as their average. For the
data pooled over the participants, there was & |8tgoop effect of 32.9 ms [t(20)=6.1, p<.001].
Positive Stroop effects were observed for virtuallyparticipants except for Participant 4.

Error Rates

The Stroop effect for error amounted to 1.2% {204, p<. 05]. In line with the model’s

prediction, more errors were observed in the incegaigt condition compared with the congruent

condition. This pattern holds at the individualdefor most participants (only four out of 21

12
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observers exhibited higher error rate on congrtrais). Evidently, the majority of the
participants exhibited some amount of errors, adipted by the model.

Stroop Effect and Error Rates

Because Stroop effect in the model is driven bgrer the model qualitatively suggests
that RT and error measures will be positively datesl. Since the proposed model is offered as a
challenge to existing theories rather than as gpcenensive new theory, there is no space for an
exhaustive meta-analysis of Stroop and error r&tegertheless, examining the RT-error
relationship in the limited data-set | have surwkege far can be proven useful. Indeed, there was
a small (though non-significant) positive linearretation between the magnitude of the Stroop
effects and error rates (both averaged across woms), bearsor.201,p=.19. When converted to
a rank-order scale, to account for the non-linektionship between RT and accuracy (e.qg.,

Luce, 1986) this correlation was stronger and ctosggnificant, gyearmarr-303,p<.1. [Table 1]

Table 1

Mean RT (ms) and error rate from Eidels, Townsend, and Algom (2010), Experiment 4.

Participant Mean RT Mean RT Stroop % error % error
number Incongruent Congruent effect Incongruent Congruent
1 621.0 581.1 39.9* 8.6 4.7

2 400.2 389.8 10.4 1.6 1.6

3 528.4 498.5 30.0 ** 0 0

4 476.9 477.5 -0.6 1.6 1.6

5 501.0 481.1 20.0 0 0

6 537.1 478.9 58.3 * 3.9 6.3

13
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7 493.5 483.7 9.8 1.6 0

8 582.5 557.9 24.6 0 0.8
9 420.5 379.3 41.2 ** 3.9 0.8
10 534.2 519.0 15.2 0 0

11 453.6 418.0 35.6 * 5.5 7.0
12 463.5 443.9 19.6 2.3 3.9
13 464.5 435.4 29.1 9.4 5.5
14 515.6 505.2 10.5 3.1 1.6
15 556.8 511.8 45.1 ** 7.0 0.8
16 480.6 425.3 55.3 ** 9.4 2.3
17 590.8 561.4 29.5* 3.9 0.8
19 563.2 494.2 69.0 ** 2.3 2.3
20 584.2 507.7 76.6 ** 3.9 0.8
21 871.8 771.6 100.3 ** 1.6 0.8
22 408.7 404.0 4.7 3.1 3.1
Means 502.2 469.3 32.9%* 3.3 2.0

* Significant at p<.05

** Significant at p<.01

Model Fitting

To fit Eidels et al. (2010) Stroop data | usedlikelihood functions of the new model,

given in Equations 5 and 6. Notice that the liketitls (the expression in the numerator) are

specified in general terms, a$) #nd S{). Therefore, for the actual fitting one can subgti f(t)

14
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and S() with comparable functions from practically anygmaetric process model that accounts
for accumulation of evidence within independentreteds. | have chosen to use the Linear
Ballistic Accumulator (LBA; Brown & Heathcote, 2008or two main reasons. First, because of
its analytical tractability, which makes it simpfeuse and relatively easy to fit. Second, because
unlike several other successful choice-RT modets,(the Leaky Competing Accumulator,

Usher & McClelland, 2001), accumulation of evidemathin each channel is completely
independent of whatever happens in other chanfieis, of course, is the trademark property of
the model | developed here, and must be satisfleghvitting the data. A brief description of the
LBA and fitting procedure follows, succeeded byirig results.

The LBA assumes that evidence about a decision g@agther to press the “red” key) is
accumulated, at some rate, until it exceeds a pbestthreshold. On each trial, the initial level
of evidence in an accumulator is drawn from a unifdistribution with a zero minimum and a
maximum determined by the parameteThe accumulator’s rate is drawn from a normal
distribution with meaw and standard deviatia Evidence in the accumulator increases linearly,
at a speed given by the drift rate, until it reacheesponse threshold determined by pararbeter
RT is the time taken for the evidence to reachstho&l plus non-decision time, or base time,
which we model as a constatat, The latter component represents the time consloyedrly
sensory processes as well as by response prepaaatioexecution. Overall then, the behavior of
each accumulator is controlled by five paramet@rswn and Heathcote (2008) derived closed-
form solutions for the cumulative densitypi-@nd density, ff, of the time taken for a single
accumulator to reach threshold. By plugging thegeessions into Equations 5 and 6 [recalling
that S{)=1-F()], one can obtain the necessary likelihood fumdifor congruent and incongruent

RTs in the Stroop task.
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To model the Stroop task used by Eidels et all@2¢he LBA instantiation should have
four channels (presented word, presented colou-pnesented word, and non-presented colour),
with five parameters each. To simplify the fittingnave employed a couple of conventions used
by Eidels, Donkin, Brown, and Heathcote (2010)stir treated the parameter as a scaling
factor and fixed it as=1. Second, | assumed that #handt, parameter values are identical
across the four accumulators. Thus, | ended uptertiree parameter4; tp, four mean-rate
parameters (one for each channel; Vg, V¢, and \b ), and four criteria (k ks, ke, and k).?

Table 2 shows the best fitting parameter-valueg&idels et al. data, using maximum
likelihood estimation. The values in the top rowr&vestimated by pooling the data from all 21
participants into a single set, and treating thesef it came from a single participant. This is
essential because for some participants erromrasdow, with only few error data-points to rely
on. | then used the best fitting parameter valuas fthis ‘super-set’ as starting values for the
parameter-space search when fitting individual .dEt& bottom row of Table 2 shows the
individual best-fitting parameter values, averagerbss 16 participants. Participants 3, 5, 7, 8,
and 10 had a 0% error rate in either one of thelitionms (congruent, incongruent), or both, and
had to be excluded from the analysis, as the mzateiot accommodate error-free performahce.
[Table 2 here]

Table 2
Best fitting parameter-values for Eidels et al. (2010) Experiment 4 Sroop data. The rate
parameter, for each channel, represents the mean of a normal distribution fromwhich rates are

sampled on each trial. The criterion parameter represents the distance between the to-be-
reached threshold and the end of the start-point distribution, A. The base time parameter, to,

2 parameter k is analogous to the distance fronsttire point to the criterion, which is denoted in-¢he LBA
framework. To be consistent with the more geneotdtion used earlier in the Model section | usadtéad of b-a.

% For participants 5 and 10 the model compensatethéolack of errors by assigning kalues (criterion for the non-
presented word channel) that were four and sew#gr®of magnitude larger than other participaradties. For
participants 3, 7, and 8, there were smaller idagies but in more than one parameter.
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represents a proportion of the fastest response in a data set. If the fastest measured RT was about
200ms (depending on the participant), then base time is estimated as 0.84 * 200ms = 168ms.

Rates Criterion values Start Base
point time
VA VB VC VD kA kB kc kD A to
presented presented non- non- presented presented non- non-
word colour presented presented word colour presented presented
word colour word colour
Pooled -1.04 3.03 -1.02 -5.23 0 0.45 0.06 0 091 0.84
data
Individual -0.30 3.48 -1.53 -6.84 0.33 0.75 0.13 0 0.98 0.65
data (0.26) (0.28) (0.76) (0.57) (0.18) (0.21) (0.05) (0.00) (0.29) (0.09)
average

(std error)

At first inspection, some of parameter values abl€ 2 may look alarming, so a
clarification is needed. First, théparameter represents the mean of a normal distibfrom
which rates are drawn on each trial. Thus, negatihges do not mean that the actual
accumulation rate is negative. Nevertheless, onyrtraals the actual rate in certain channels may
have been negative. That is not a problem as Ieaglaast one of the channels accumulates
evidence at a positive rate, which is almost alvtagscase. Notice that this channel will often be
the presented-colour channel, which leads to a&cbresponse, in compliance with the task’s
instructions. Second, the zero values forkiparameter are also not a problem. This parameter
represents the distance between the to-be-reabheshold and the end of the start-point
distribution,A. since the start point values are drawn from &oumi distribution ranging from
zero toA, there is only a miniscule chance that the aatisthnce will be zero. In fact, the
expected value of the start point&, so the average distance gike® should beA-A/2 =A/2.

Importantly, for interpreting the fitting resultl] rate and criterion parameters, as well as
A andty, were allowed to vary freely. Thus, instead of asipg any constraints or assumptions, |
let the data tell the story. A close examinatioff able 2 reveals interesting patterns. First,

parameter estimates from the pooled data, and gstgeated for individual participants and then
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averaged are in close qualitative agreement. Setobadate for the presented-colour channel
was higher than any of the other rates. This isib&in a Stroop task, where participates’ are
asked to report the presented print-colour. Theeed-word rate was also larger than (or equal
to) the rates of the non-presented channels. $latso sensible in this model since this channel
has to win on some trials to contribute to a Streffpct. Thus, although channel rates were free
parameters, higher rate-values were estimatedrésepted channels compared with non-
presented channels, in complete agreement witagbemption entertained in the Model section.
The relative magnitudes of the criterion-valuesvide a more intricate picture. The

criterion value for the presented-colour channet Waher than any of the other channels. It is
possible that through the complex dynamics of tB& Imodel, rates and criterion values trade-
off in a way that is difficult to predict. In thsase, the fact that the rate for presented colasr w
much higher than any other rate might mitigatettigé criterion-value estimated for this
channel. Finally, while fitting the model to datangrally resulted in sensible parameter values,
parameters became distorted when trying to caplate patterns they cannot really manage
(namely, 0% errors). Thus, the model can accomneatktia from most, but not all participafits.

The theoretical weight of the present outcomedeaavieplication and generalization. To
reinforce the conclusions, | have simulated (nuoadly computed, to be exact) the general
model presented in Equations 5 and 6 using altemgiressions fortand S{). Instead of
plugging in the f{) and S{) expressions of the LBA model, | assumed that detigm times in
each of the channels are Gamma distributed. Tter lata convenient test case (see, e.g.,

Townsend & Ashby, 1983) as it has two parameterstakrate and criterion. Usingtf(and S{)

4 How do we know if the model can accommodate tha?#/hat are sensible parameter values? Becawusedtd
compare several models, measures such as deviaBt€ are not very helpful. A useful strategy isplag the best
fitting parameter values back in the model, simeulgtand test whether the model can reproducanpertant
qualitative patterns that were observed in the goglidata. Using the pooled-data parameter vdthaoes Table 2,
the model successfully recovered a positive Steftgrt in mean RT (albeit smaller than observedigogly) and
in error rate, accompanied with high, yet imperfemturacy (2.6% errors).
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of a Gamma distribution | have tested a wide rasfgate and criterion values and found that a
considerable subset of the parameter combinati@aisatisfy the rate assumption led to a
positive Stroop effect (96,229 out of the 200,880ameter combinations). Full details are

provided in the Appendix.

Conclusions

| proposed and tested a new model for the Strofgetefn which colour and word are
processed in parallel and completely independesntirodls. Model fitting to empirical data and
subsequent simulations show that the model carupmthe Stroop effect (along with high
accuracy rates), at least for a subset of paramabees. Thus, it provides a proof of existence for
a separate-channel theory, and a challenge to mdsing theories.

The theoretical implications are nothing less thtamtling. Given the present results, the
Stroop effect cannot be exclusively viewed as tigeitable outcome of word-colour conflict. In
many an occasion, it may simply be an instancaefédundant target effect by which the
congruent (i.e., double-target) stimulus enjoyshiéeefit of target redundancy over the
incongruent (single-target) stimulus. Faster resperior the former merely reflect the activation
gained from processing channels of two presentedates as opposed to processing just one.

One must be circumspect though before drawingtt@mg conclusions. Although a
substantial part of the parameter combinationswieseé used in the simulations produced the
behavioral Stroop effect, a smaller subset prodtlcedhigh accuracy rates observed often in
experimental data (see Appendix). Note also tligd hot demonstrate that other more traditional
models of the Stroop effect are incorrect; | hawsety shown that, under realistic conditions, the

effect can emerge based on completely independeoégsing of the colour and the word.
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In its present form, the independent-channels moaleterns the Stroop effect, namely,
the difference in performance between incongruedt@ngruent stimuli. However, a third class
of stimuli is often presented in Stroop experiments-colour words in colour. Considering
performance with these neutral stimuli, the Stretipct is conveniently divided into interference
(the difference in performance between incongraeatneutral stimuli) and facilitation (the
complementary difference in performance betweeitrakand congruent stimuli). Again, the
present development concerns the Stroop effestdoahe majority of existing Stroop theories
(cf. Brown, 2011; Melara & Algom, 2003; MacLeod,a119 -- and not the components of
interference and facilitation. The reason is thatt(is not clear which stimulus qualifies as a
neutral one (MacLeod, 1990), that (b) a vast vdlrtgitis observed with different types of neutral
or control stimuli (Brown, 2011), and that (c)stnot prima facie clear that such stimuli belong
in the Stroop realm in the first place (Eidelslet2010).

Nevertheless, how does the present model accoutitdmften found difference in
performance between the neutral and the incongmditions favoring the former (but see
Algom, Dekel, & Pansky, 1996, Melara & Algom, 208BMelara & Mounts, 1993, for the lack
of interference or a reverse pattern)? In the prtes®del, strain on capacity with incongruent
stimuli is the root cause for the longer RTs obsdr{in comparison with neutral stimuli). With
an incongruent stimulus, the observer must pro@ddsast) four pieces of information (the
presented and non-presented colours as well ggélsented and non-presented words), whereas
she or he processes merely two pieces of informgticesented and non-presented colour) with
neutral stimuli. As Townsend and colleagues havequ (Townsend & Ashby, 1983; Townsend
& Eidels, 2011; Townsend & Wenger, 2004), the pneseof multiple signals can facilitate

performance (the redundant target effect), buticgrair performance especially as the number
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of signals increases. The limitation on capacitgxpressed as longer RTs with incongruent
stimuli (cf. Ben-David & Algom, 2009).

A comprehensive Stroop theory should explain furgiegtinent phenomena such as the
reduction in the Stroop effect when word and cokaner spatially separated (Wuhr & Frings,
2008), Stroop dilution (Kahneman and Chajczyk, 3198Bpractice effects (Melara & Mounts,
1993). The current model is offered as a challéndbe central claim of many existing Stroop
theories -- that word must interact with colourg@ssing -- and provides a proof of existence for
a completely independent model of processing. Theaihshould be augmented in various ways
in future development (for example, by adding a meprdecay function it may account for
practice and other sequential effects) as long@basic architecture remains that of parallel
independent channels.

In conclusion, | showed that a parallel race med#i four independent channels can
generate the Stroop effect. The model leads tsuhgrising result that what appears as
“interference” or “facilitation” at the behaviorldvel may actually be sustained by completely
separate processes at the underlying microscoget IBecause | do not postulate a processing
conflict to stand for an apparent behavioral catflihe theory is favored by applying Occam’s
razor. The theory serves as a yardstick againstwthieories assuming actual interaction in

processing must be measured and compete.
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Appendix: numerical computations of the Stroop affe

To reinforce the results reported in the main testhg the LBA model, | have simulated
the same general model (Equations 5 and 6) usingrid S() expressions of a Gamma
distribution. This distribution is convenient toeus RT modeling in general and here in
particular, since it has two parameters akin te eatd criterion.

In order to estimate numerically the Stroop efteetmodel can generate, one first needs
to compute the probability distribution functiongdasurvivor functions in each channel, and
insert them then into Equations 5 and 6. From theretrivial to estimate the expected value of
processing time on congruent and incongruent taatscalculate their difference — the Stroop
effect. The probability distribution functions asdrvivor functions of a Gamma distribution for

channel A (presented word) are given, respectisly,

(VAt) ka-1 VAe—VAt

L= @

s,m=3 Ve

, 8)

=0 J:

where \4 is the scale parameter (corresponding to the psig rate of channel A), and Is the
shape parameter (corresponding to the criteriomevaf that channel). We can similarly compute
probability distribution functions and survivor fttions for the other channels by using their

corresponding rates and criteria.
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I numerically computed the Stroop effect, using Gardistributions, for a range of
values that satisfied the assumption concerningela¢éive magnitude of the rate parameters. |
allowed the rates for the presented word channglawd for the presented colour channe, 1%
take any value between 1 and 11 (due to memorytreams | used steps of 2, i.e., 1, 3,5 ...11). |
allowed the rates for the non-presented word atmliceahannels, ¥ and \b, to take any value
between 1 and 11 (in steps of 2), as long as tleeg emaller than MIN (¥, Vg). So, the
possible values for rate across the four channetelL1> Va, Vg > V¢, Vp. The values of
criterion were assigned, in steps of 2, such tBat &a, kg, ke, kp > 2°

On a considerable number of cases (96,299 out@B80 parameter combinations) the
expected processing time of a congruent stimulusfaster than that of an incongruent stimulus,
thus manifesting a positive Stroop effect.

What is truly revealing about these results isfiot that the Stroop effects are obtained
in the environment of a strictly parallel, indepentimodel. One can say that within the parallel
independent race of colour and word, the colouséa@nows neither the position nor indeed the
very existence of the word horse (and vice verfSajen the absence of cross talk, word and
colour cannot interact. In these cases, the teBtr®0p interference” or “Stroop conflict” are not
interpretative of any underlying process.

| note though that only a subset of the testedrparar combinations led to a positive
Stroop. When one imposes the additional constadihigh accuracy [say, P(correct) > .9 on both
congruent and incongruent trials], this numberfertdecreases (to 3,635 combinations).
Nevertheless, the present outcome comprises a pf@xistence for the possibility of a Stroop

effect in the absence of channel cross talk faaréety of reasonable set parameters.

® | did not use criterion values of 1, since the @anprobability distribution is then reduced to apanential form,
which does not permit an important distinction begw a co-active and an independent race modeE(deks,
Townsend, & Algom, 2010, for details).
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